El CSIC y la UVigo hallan una variabilidad genética en el mejillón única en animales

27 de diciembre de 2020

Un equipo coordinado por científicos del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidade de Vigo ha secuenciado el genoma completo del mejillón mediterráneo (Mytilus galloprovincialis), una investigación que, además de revelar que la especie contiene 65.000 genes, más del doble que los del ser humano, ha sacado a la luz algunas claves para comprender la enorme capacidad de adaptación y resistencia al estrés de este “super organismo marino”.

El trabajo, ha desvelado una arquitectura genómica totalmente inusual para un animal. Este sistema está basado en genes que comparten todos los individuos de la especie y en aproximadamente un 20 % de “genes prescindibles”, que no son compartidos por todos y que están relacionados con funciones de supervivencia. Este conocimiento podría ser aplicado, por ejemplo, en el diseño de nuevos tratamientos frente a enfermedades.

Los mejillones están constantemente expuestos a una amplia gama de microorganismos potencialmente patógenos y otros contaminantes, ya que se alimentan por filtración. Sin embargo, muestran una elevada resistencia, a diferencia de otros bivalvos.

Asimismo, contienen una gran cantidad de péptidos antimicrobianos, moléculas con actividad antibacteriana que además protegen frente a virus de distintas especies, incluidos algunos humanos.

Los investigadores han ensamblado un genoma de referencia del mejillón de 1,28 gigabytes de tamaño (el del ser humano es de 3,3 gigabytes) y han hallado que este bivalvo tiene aproximadamente 65.000 genes, mientras que el ser humano tiene 30.000. Además, han secuenciado el genoma de otros 14 individuos de dos poblaciones independientes de Galicia e Italia.

“Hemos descubierto que el genoma del mejillón es un pangenoma, compuesto de un conjunto central de 45.000 genes más unos 15.000 genes prescindibles. Estos están sujetos a variaciones de presencia o ausencia de genes, lo que significa que pueden faltar por completo en algunos individuos”, explica el investigador del CSIC y corresponsable del proyecto, Antonio Figueras, que trabaja en el Instituto de Investigaciones Marinas (IIM CSIC), en Vigo.

Por su parte, David Posada, investigador de la Universidad de Vigo y coautor principal de la investigación junto a Figueras, señala que “este tipo de arquitectura genómica es un fenómeno nuevo en animales”. “Que un animal tenga un 20 % distinto su genoma que otro de su misma especie es realmente inaudito. Al principio pensamos que era un error, pero al final pudimos comprobar que era cierto”, precisa.

Este trabajo ha contado también con la labor clave de científicos de la Universidad de Trieste, con Marco Gerdol como primer autor, y la Universidad de Padua (ambas en Italia); el Instituto de Biología Evolutiva (CSIC-UPF), y el Centro Nacional de Análisis Genómico (CNAG-CRG), cuyos científicos, con Tyler Allioto y Marta Gutal frente, han coordinado el ensamblaje y la secuenciación del genoma.

 

Primer pangenoma en animales

 

Esta investigación supone la primera descripción de un pangenoma en un animal (metazoo), así como la existencia de un fenómeno masivo de ausencia y presencia de genes en este reino, algo que solo se había descubierto en microorganismos y de forma ocasional en plantas, microalgas y hongos.

En las bacterias, los genes prescindibles proporcionan ventajas evolutivas que mejoran la capacidad de migrar a nuevos nichos ecológicos y proporcionan una contribución significativa a la variación fenotípica de las plantas. “Creemos que las funciones asociadas a los 15.000 genes prescindibles del mejillón suponen también un recurso invaluable para esta especie”, indica el investigador del CSIC.

La secuenciación del genoma del mejillón también ha permitido a los científicos profundizar más en la elevada variabilidad de las secuencias de las moléculas antimicrobianas que contienen.

A nivel práctico, este conocimiento permitirá a los científicos entender cómo funcionan estas moléculas y su diversidad. “Este trabajo permitirá desarrollar herramientas genómicas que puedan servir en el futuro para protegerlos de posibles enfermedades, o para mejorar su producción y calidad”, explica el investigador de la Universidad de Vigo.